Papers
Topics
Authors
Recent
Search
2000 character limit reached

Special elements of the lattice of epigroup varieties

Published 2 Aug 2014 in math.GR | (1408.0356v10)

Abstract: We study special elements of eight types (namely, neutral, standard, costandard, distributive, codistributive, modular, lower-modular and upper-modular elements) in the lattice EPI of all epigroup varieties. Neutral, standard, costandard, distributive and lower-modular elements are completely determined. A strong necessary condition and a sufficient condition for modular elements are found. Modular elements are completely classified within the class of commutative varieties, while codistributive and upper-modular elements are completely determined within the wider class of strongly permutative varieties. It is verified that an element of EPI is costandard if and only if it is neutral; is standard if and only if it is distributive; is modular whenever it is lower-modular; is neutral if and only if it is lower-modular and upper-modular simultaneously. We found also an application of results concerning neutral and lower-modular elements of EPI for studying of definable sets of epigroup varieties.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.