Configurations of Points and the Symplectic Berry-Robbins Problem (1407.8291v2)
Abstract: We present a new problem on configurations of points, which is a new version of a similar problem by Atiyah and Sutcliffe, except it is related to the Lie group $\operatorname{Sp}(n)$, instead of the Lie group $\operatorname{U}(n)$. Denote by $\mathfrak{h}$ a Cartan algebra of $\operatorname{Sp}(n)$, and $\Delta$ the union of the zero sets of the roots of $\operatorname{Sp}(n)$ tensored with $\mathbb{R}3$, each being a map from $\mathfrak{h} \otimes \mathbb{R}3 \to \mathbb{R}3$. We wish to construct a map $(\mathfrak{h} \otimes \mathbb{R}3) \backslash \Delta \to \operatorname{Sp}(n)/Tn$ which is equivariant under the action of the Weyl group $W_n$ of $\operatorname{Sp}(n)$ (the symplectic Berry-Robbins problem). Here, the target space is the flag manifold of $\operatorname{Sp}(n)$, and $Tn$ is the diagonal $n$-torus. The existence of such a map was proved by Atiyah and Bielawski in a more general context. We present an explicit smooth candidate for such an equivariant map, which would be a genuine map provided a certain linear independence conjecture holds. We prove the linear independence conjecture for $n=2$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.