Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sure Screening for Gaussian Graphical Models (1407.7819v1)

Published 29 Jul 2014 in stat.ML and cs.LG

Abstract: We propose {graphical sure screening}, or GRASS, a very simple and computationally-efficient screening procedure for recovering the structure of a Gaussian graphical model in the high-dimensional setting. The GRASS estimate of the conditional dependence graph is obtained by thresholding the elements of the sample covariance matrix. The proposed approach possesses the sure screening property: with very high probability, the GRASS estimated edge set contains the true edge set. Furthermore, with high probability, the size of the estimated edge set is controlled. We provide a choice of threshold for GRASS that can control the expected false positive rate. We illustrate the performance of GRASS in a simulation study and on a gene expression data set, and show that in practice it performs quite competitively with more complex and computationally-demanding techniques for graph estimation.

Citations (22)

Summary

We haven't generated a summary for this paper yet.