Topological index for periodically driven time-reversal invariant 2D systems (1407.7747v2)
Abstract: We define a new $Z_2$-valued index to characterize the topological properties of periodically driven two dimensional crystals when the time-reversal symmetry is enforced. This index is associated with a spectral gap of the evolution operator over one period of time. When two such gaps are present, the Kane-Mele index of the eigenstates with eigenvalues between the gaps is recovered as the difference of the gap indices. This leads to an expression for the Kane-Mele invariant in terms of the Wess-Zumino amplitude. We illustrate the relation of the new index to the edge states in finite geometries by numerically solving an explicit model on the square lattice that is periodically driven in a time-reversal invariant way.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.