Papers
Topics
Authors
Recent
2000 character limit reached

A complexity approach to the soliton resolution conjecture (1407.7570v1)

Published 28 Jul 2014 in math-ph, math.AP, math.DS, and math.MP

Abstract: The soliton resolution conjecture is one of the most interesting open problems in the theory of nonlinear dispersive equations. Roughly speaking it asserts that a solution with generic initial condition converges to a finite number of solitons plus a radiative term. In this paper we use the complexity of a finite object, a notion introduced in Algorithmic Information Theory, to show that the soliton resolution conjecture is equivalent to the analogous of the second law of thermodynamics for the complexity of a solution of a dispersive equation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.