Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Partition-Symmetrical Entropy Functions (1407.7405v2)

Published 28 Jul 2014 in cs.IT and math.IT

Abstract: Let $\cal{N}={1,\cdots,n}$. The entropy function $\bf h$ of a set of $n$ discrete random variables ${X_i:i\in\cal N}$ is a $2n$-dimensional vector whose entries are ${\bf{h}}({\cal{A}})\triangleq H(X_{\cal{A}}),\cal{A}\subset{\cal N} $, the (joint) entropies of the subsets of the set of $n$ random variables with $H(X_\emptyset)=0$ by convention. The set of all entropy functions for $n$ discrete random variables, denoted by $\Gamma*_n$, is called the entropy function region for $n$. Characterization of $\Gamma*_n$ and its closure $\overline{\Gamma*_n}$ are well-known open problems in information theory. They are important not only because they play key roles in information theory problems but also they are related to other subjects in mathematics and physics. In this paper, we consider \emph{partition-symmetrical entropy functions}. Let $p={\cal{N}_1,\cdots, \cal{N}_t}$ be a $t$-partition of $\cal N$. An entropy function $\bf h$ is called $p$-symmetrical if for all ${\cal A},{\cal B} \subset {\cal N}$, $\bf{h}({\cal A}) = \bf{h}({\cal B})$ whenever $|{\cal A} \cap {\cal N}_i| = |{\cal B} \cap {\cal N}_i|$, $i = 1, \cdots,t$. The set of all the $p$-symmetrical entropy functions, denoted by $\Psi*_p$, is called $p$-symmetrical entropy function region. We prove that $\overline{\Psi*_p}$, the closure of $\Psi*_p$, is completely characterized by Shannon-type information inequalities if and only if $p$ is the $1$-partition or a $2$-partition with one of its blocks being a singleton. The characterization of the partition-symmetrical entropy functions can be useful for solving some information theory and related problems where symmetry exists in the structure of the problems. Keywords: entropy, entropy function, information inequality, polymatroid.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.