Theoretical and experimental evidence of non-symmetric doubly localized rogue waves (1407.7266v1)
Abstract: We present determinant expressions for vector rogue wave solutions of the Manakov system, a two-component coupled nonlinear Schr\"odinger equation. As special case, we generate a family of exact and non-symmetric rogue wave solutions of the nonlinear Schr\"odinger equation up to third-order, localized in both space and time. The derived non-symmetric doubly-localized second-order solution is generated experimentally in a water wave flume for deep-water conditions. Experimental results, confirming the characteristic non-symmetric pattern of the solution, are in very good agreement with theory as well as with numerical simulations, based on the modified nonlinear Schr\"odinger equation, known to model accurately the dynamics of weakly nonlinear wave packets in deep-water.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.