Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Robust and Efficient Method for Improving Accuracy of License Plate Characters Recognition (1407.6705v2)

Published 24 Jul 2014 in cs.CV

Abstract: License Plate Recognition (LPR) plays an important role on the traffic monitoring and parking management. A robust and efficient method for enhancing accuracy of license plate characters recognition based on K Nearest Neighbours (K-NN) classifier is presented in this paper. The system first prepares a contour form of the extracted character, then the angle and distance feature information about the character is extracted and finally K-NN classifier is used to character recognition. Angle and distance features of a character have been computed based on distribution of points on the bitmap image of character. In K-NN method, the Euclidean distance between testing point and reference points is calculated in order to find the k-nearest neighbours. We evaluated our method on the available dataset that contain 1200 sample. Using 70% samples for training, we tested our method on whole samples and obtained 99% correct recognition rate.Further, we achieved average 99.41% accuracy using three/strategy validation technique on 1200 dataset.

Citations (4)

Summary

We haven't generated a summary for this paper yet.