Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Perfect simulation using atomic regeneration with application to Sequential Monte Carlo (1407.5770v1)

Published 22 Jul 2014 in stat.CO

Abstract: Consider an irreducible, Harris recurrent Markov chain of transition kernel {\Pi} and invariant probability measure {\pi}. If {\Pi} satisfies a minorization condition, then the split chain allows the identification of regeneration times which may be exploited to obtain perfect samples from {\pi}. Unfortunately, many transition kernels associated with complex Markov chain Monte Carlo algorithms are analytically intractable, so establishing a minorization condition and simulating the split chain is challenging, if not impossible. For uniformly ergodic Markov chains with intractable transition kernels, we propose two efficient perfect simulation procedures of similar expected running time which are instances of the multigamma coupler and an imputation scheme. These algorithms overcome the intractability of the kernel by introducing an artificial atom and using a Bernoulli factory. We detail an application of these procedures when {\Pi} is the recently introduced iterated conditional Sequential Monte Carlo kernel. We additionally provide results on the general applicability of the methodology, and how Sequential Monte Carlo methods may be used to facilitate perfect simulation and/or unbiased estimation of expectations with respect to the stationary distribution of a non-uniformly ergodic Markov chain.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.