Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Meta-stable states in the hierarchical Dyson model drive parallel processing in the hierarchical Hopfield network (1407.5176v1)

Published 19 Jul 2014 in cond-mat.dis-nn, math-ph, and math.MP

Abstract: In this paper we introduce and investigate the statistical mechanics of hierarchical neural networks: First, we approach these systems `a la Mattis, by thinking at the Dyson model as a single-pattern hierarchical neural network and we discuss the stability of different retrievable states as predicted by the related self-consistencies obtained from a mean-field bound and from a bound that bypasses the mean-field limitation. The latter is worked out by properly reabsorbing fluctuations of the magnetization related to higher levels of the hierarchy into effective fields for the lower levels. Remarkably, mixing Amit's ansatz technique (to select candidate retrievable states) with the interpolation procedure (to solve for the free energy of these states) we prove that (due to gauge symmetry) the Dyson model accomplishes both serial and parallel processing. One step forward, we extend this scenario toward multiple stored patterns by implementing the Hebb prescription for learning within the couplings. This results in an Hopfield-like networks constrained on a hierarchical topology, for which, restricting to the low storage regime (where the number of patterns grows at most logarithmical with the amount of neurons), we prove the existence of the thermodynamic limit for the free energy and we give an explicit expression of its mean field bound and of the related improved bound

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.