The Strength of Abstraction with Predicative Comprehension (1407.3860v4)
Abstract: Frege's theorem says that second-order Peano arithmetic is interpretable in Hume's Principle and full impredicative comprehension. Hume's Principle is one example of an abstraction principle, while another paradigmatic example is Basic Law V from Frege's Grundgesetze. In this paper we study the strength of abstraction principles in the presence of predicative restrictions on the comprehension schema, and in particular we study a predicative Fregean theory which contains all the abstraction principles whose underlying equivalence relations can be proven to be equivalence relations in a weak background second-order logic. We show that this predicative Fregean theory interprets second-order Peano arithmetic.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.