Notes on extremal and tame valued fields (1407.3759v2)
Abstract: We extend the characterization of extremal valued fields given in \cite{[AKP]} to the missing case of valued fields of mixed characteristic with perfect residue field. This leads to a complete characterization of the tame valued fields that are extremal. The key to the proof is a model theoretic result about tame valued fields in mixed characteristic. Further, we prove that in an extremal valued field of finite $p$-degree, the images of all additive polynomials have the optimal approximation property. This fact can be used to improve the axiom system that is suggested in \cite{[K1]} for the elementary theory of Laurent series fields over finite fields. Finally we give examples that demonstrate the problems we are facing when we try to characterize the extremal valued fields with imperfect residue fields. To this end, we describe several ways of constructing extremal valued fields; in particular, we show that in every $\aleph_1$ saturated valued field the valuation is a composition of extremal valuations of rank 1.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.