Papers
Topics
Authors
Recent
2000 character limit reached

Identifying Social Satisfaction from Social Media

Published 14 Jul 2014 in cs.CY, cs.SI, and physics.soc-ph | (1407.3552v1)

Abstract: We demonstrate the critical need to identify social situation and instability factors by acquiring public social satisfaction in this research. However, subject to the large amount of manual work cost in subject recruitment and data processing, conventional self-reported method cannot be implemented in real time or applied in large scale investigation. To solve the problem, this paper proposed an approach to predict users' social satisfaction, especially for the economy-related satisfaction based on users' social media records. We recruited 2,018 Cantonese active participants from each city in Guangdong province according to the population distribution. Both behavioral and linguistic features of the participants are extracted from the online records of social media, i.e., Sina Weibo. Regression models are used to predict Sina Weibo users' social satisfaction. Furthermore, we consult the economic indexes of Guangdong in 2012, and calculate the correlations between these indexes and the predicted social satisfaction. Results indicate that social satisfaction can be significantly expressed by specific social media features; local economy satisfaction has significant positive correlations with several local economy indexes, which supports that it is reliable to predict social satisfaction from social media.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.