Papers
Topics
Authors
Recent
2000 character limit reached

An invariant of topologically ordered states under local unitary transformations (1407.2926v3)

Published 10 Jul 2014 in quant-ph, cond-mat.str-el, math-ph, and math.MP

Abstract: For an anyon model in two spatial dimensions described by a modular tensor category, the topological S-matrix encodes the mutual braiding statistics, the quantum dimensions, and the fusion rules of anyons. It is nontrivial whether one can compute the S-matrix from a single ground state wave function. Here, we define a class of Hamiltonians consisting of local commuting projectors and an associated matrix that is invariant under local unitary transformations. We argue that the invariant is equivalent to the topological S-matrix. The definition does not require degeneracy of the ground state. We prove that the invariant depends on the state only, in the sense that it can be computed by any Hamiltonian in the class of which the state is a ground state. As a corollary, we prove that any local quantum circuit that connects two ground states of quantum double models (discrete gauge theories) with non-isomorphic abelian groups, must have depth that is at least linear in the system's diameter. As a tool for the proof, a manifestly Hamiltonian-independent notion of locally invisible operators is introduced. This gives a sufficient condition for a many-body state not to be generated from a product state by any small depth quantum circuit; this is a many-body entanglement witness.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.