Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Ongoing Impact of Modular Localization on Particle Theory

Published 8 Jul 2014 in math-ph, hep-th, and math.MP | (1407.2124v2)

Abstract: Modular localization is the concise conceptual formulation of causal localization in the setting of local quantum physics. Unlike QM it does not refer to individual operators but rather to ensembles of observables which share the same localization region, as a result it explains the probabilistic aspects of QFT in terms of the impure KMS nature arising from the local restriction of the pure vacuum. Whereas it played no important role in the perturbation theory of low spin particles, it becomes indispensible for interactions which involve higher spin $s\geq1$ fields, where is leads to the replacement of the operator (BRST) gauge theory setting in Krein space by a new formulation in terms of stringlocal fields in Hilbert space. The main purpose of this paper is to present new results which lead to a rethinking of important issues of the Standard Model concerning massive gauge theories and the Higgs mechanism. We place these new findings into the broader context of ongoing conceptual changes within QFT which already led to new nonperturbative constructions of models of integrable QFTs. It is also pointed out that modular localization does not support ideas coming from string theory, as extra dimensions and Kaluza-Klein dimensional reductions outside quasiclassical approximations. Apart from hologarphic projections on null-surfaces, holograhic relations between QFT in different spacetime dimensions violate the causal completeness property, this includes in particular the Maldacena conjecture. Last not least, modular localization sheds light onto unsolved problems from QFT's distant past since it reveals that the Einstein-Jordan conundrum is really an early harbinger of the Unruh effect.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.