Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal Collocation Nodes for Fractional Derivative Operators

Published 2 Jul 2014 in math.NA | (1407.0552v1)

Abstract: Spectral discretizations of fractional derivative operators are examined, where the approximation basis is related to the set of Jacobi polynomials. The pseudo-spectral method is implemented by assuming that the grid, used to represent the function to be differentiated, may not be coincident with the collocation grid. The new option opens the way to the analysis of alternative techniques and the search of optimal distributions of collocation nodes, based on the operator to be approximated. Once the initial representation grid has been chosen, indications on how to recover the collocation grid are provided, with the aim of enlarging the dimension of the approximation space. As a results of this process, performances are improved. Applications to fractional type advection-diffusion equations, and comparisons in terms of accuracy and efficiency are made. As shown in the analysis, special choices of the nodes can also suggest tricks to speed up computations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.