A second-order efficient empirical Bayes confidence interval (1407.0158v2)
Abstract: We introduce a new adjusted residual maximum likelihood method (REML) in the context of producing an empirical Bayes (EB) confidence interval for a normal mean, a problem of great interest in different small area applications. Like other rival empirical Bayes confidence intervals such as the well-known parametric bootstrap empirical Bayes method, the proposed interval is second-order correct, that is, the proposed interval has a coverage error of order $O(m{-{3}/{2}})$. Moreover, the proposed interval is carefully constructed so that it always produces an interval shorter than the corresponding direct confidence interval, a property not analytically proved for other competing methods that have the same coverage error of order $O(m{-{3}/{2}})$. The proposed method is not simulation-based and requires only a fraction of computing time needed for the corresponding parametric bootstrap empirical Bayes confidence interval. A Monte Carlo simulation study demonstrates the superiority of the proposed method over other competing methods.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.