Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Dynamic Approach to Linear Statistical Calibration with an Application in Microwave Radiometry (1406.7863v4)

Published 30 Jun 2014 in stat.CO

Abstract: The problem of statistical calibration of a measuring instrument can be framed both in a statistical context as well as in an engineering context. In the first, the problem is dealt with by distinguishing between the 'classical' approach and the 'inverse' regression approach. Both of these models are static models and are used to estimate exact measurements from measurements that are affected by error. In the engineering context, the variables of interest are considered to be taken at the time at which you observe it. The Bayesian time series analysis method of Dynamic Linear Models (DLM) can be used to monitor the evolution of the measures, thus introducing an dynamic approach to statistical calibration. The research presented employs the use of Bayesian methodology to perform statistical calibration. The DLM's framework is used to capture the time-varying parameters that maybe changing or drifting over time. Two separate DLM based models are presented in this paper. A simulation study is conducted where the two models are compared to some well known 'static' calibration approaches in the literature from both the frequentist and Bayesian perspectives. The focus of the study is to understand how well the dynamic statistical calibration methods performs under various signal-to-noise ratios, r. The posterior distributions of the estimated calibration points as well as the 95% coverage intervals are compared by statistical summaries. These dynamic methods are applied to a microwave radiometry data set.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.