An obstruction relating locally finite polygons to translation quadrangles (1406.6583v1)
Abstract: One of the most fundamental open problems in Incidence Geometry, posed by Tits in the 1960s, asks for the existence of so-called "locally finite generalized polygons" | that is, generalized polygons with "mixed parameters" (one being finite and the other not). In a more specialized context, another long-standing problem (from the 1990s) is as to whether the endomorphism ring of any translation generalized quadrangle is a skew field (the answer of which is known in the finite case). (The analogous problem for projective planes, and its positive solution, the "Bruck-Bose construction," lies at the very base of the whole theory of translation planes.) In this short note, we introduce a category, representing certain very specific embeddings of generalized polygons, which surprisingly controls the solution of both (apparently entirely unrelated) problems.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.