Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast algorithms for simulating chiral fermions in U(1)lattice gauge theory (1406.6279v1)

Published 24 Jun 2014 in hep-lat

Abstract: In order to develop fast inversion algorithms we have used overlap solvers in two dimensions. Lattice QED theory with U(1) group symmetry in two dimensional space-times dimensions has always been a testing ground for algorithms. By the other side, motivated by our previews work that the two-grid algorithm converge faster than the standard iterative methods for overlap inversion but not for all quark masses, we thought to test this idea in less dimensions such as U(1) gauge theory. Our main objective of this paper it is to implement and develop the idea of a two level algorithm in a new algorithm coded in QCDLAB. This implementation is presented in the preconditioned GMRESR algorithm, as our new contribution in QCDLAB package. The preconditioned part of our algorithm, different from the one of [18], is the approximation of the overlap operator with the truncated overlap operator with finite N3 dimension. We have tested it for 100 statistically independent configurations on 32 x 32 lattice background U(1) field at coupling constant \b{eta}=1 and for different bare quark masses mq = [0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1]. We have compared the convergence history of the preconditioned GMRESR residual norm with another overlap inverter of QCDLAB as an optimal one, such as SHUMR. We have shown that our algorithm converges faster than SHUMR for different quark masses. Also, we have demonstrated that it saves more time for light quarks compared to SHUMR algorithm. Our algorithm is approximately independent from the quark mass. This is a key result in simulations with chiral fermions in lattice theories. By the other side, if we compare the results of [18] for quark mass 0.1 in SU(3), results that our chosen preconditioned saves a factor of 2 but in U(1). Our next step is to test this algorithm in SU(3) and to adopt it in parallel.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.