Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination (1406.6031v1)

Published 23 Jun 2014 in math.ST and stat.TH

Abstract: Multivariate location and scatter matrix estimation is a cornerstone in multivariate data analysis. We consider this problem when the data may contain independent cellwise and casewise outliers. Flat data sets with a large number of variables and a relatively small number of cases are common place in modern statistical applications. In these cases global down-weighting of an entire case, as performed by traditional robust procedures, may lead to poor results. We highlight the need for a new generation of robust estimators that can efficiently deal with cellwise outliers and at the same time show good performance under casewise outliers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.