Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination (1406.6031v1)
Abstract: Multivariate location and scatter matrix estimation is a cornerstone in multivariate data analysis. We consider this problem when the data may contain independent cellwise and casewise outliers. Flat data sets with a large number of variables and a relatively small number of cases are common place in modern statistical applications. In these cases global down-weighting of an entire case, as performed by traditional robust procedures, may lead to poor results. We highlight the need for a new generation of robust estimators that can efficiently deal with cellwise outliers and at the same time show good performance under casewise outliers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.