Asymptotic Exponential Arbitrage and Utility-based Asymptotic Arbitrage in Markovian Models of Financial Markets (1406.5312v1)
Abstract: Consider a discrete-time infinite horizon financial market model in which the logarithm of the stock price is a time discretization of a stochastic differential equation. Under conditions different from those given in a previous paper of ours, we prove the existence of investment opportunities producing an exponentially growing profit with probability tending to $1$ geometrically fast. This is achieved using ergodic results on Markov chains and tools of large deviations theory. Furthermore, we discuss asymptotic arbitrage in the expected utility sense and its relationship to the first part of the paper.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.