Generalized Eilenberger theory for Majorana zero-mode-carrying disordered $p$-wave superconductors (1406.4853v2)
Abstract: Disorder is known to suppress the gap of a topological superconducting state that would support non-Abelian Majorana zero modes. In this paper, we study using the self-consistent Born approximation the robustness of the Majorana modes to disorder within a suitably extended Eilenberger theory, in which the spatial dependence of the localized Majorana wave functions is included. We find that the Majorana mode becomes delocalized with increasing disorder strength as the topological superconducting gap is suppressed. However, surprisingly, the zero bias peak seems to survive even for disorder strength exceeding the critical value necessary for closing the superconducting gap within the Born approximation.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.