Papers
Topics
Authors
Recent
2000 character limit reached

Quantitative propagation of chaos for generalized Kac particle systems

Published 9 Jun 2014 in math.PR | (1406.2115v4)

Abstract: We study a class of one-dimensional particle systems with true (Bird type) binary interactions, which includes Kac's model of the Boltzmann equation and nonlinear equations for the evolution of wealth distribution arising in kinetic economic models. We obtain explicit rates of convergence for the Wasserstein distance between the law of the particles and their limiting law, which are linear in time and depend in a mild polynomial manner on the number of particles. The proof is based on a novel coupling between the particle system and a suitable system of nonindependent nonlinear processes, as well as on recent sharp estimates for empirical measures.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.