Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Median Filtering is Equivalent to Sorting (1406.1717v1)

Published 6 Jun 2014 in cs.DS

Abstract: This work shows that the following problems are equivalent, both in theory and in practice: - median filtering: given an $n$-element vector, compute the sliding window median with window size $k$, - piecewise sorting: given an $n$-element vector, divide it in $n/k$ blocks of length $k$ and sort each block. By prior work, median filtering is known to be at least as hard as piecewise sorting: with a single median filter operation we can sort $\Theta(n/k)$ blocks of length $\Theta(k)$. The present work shows that median filtering is also as easy as piecewise sorting: we can do median filtering with one piecewise sorting operation and linear-time postprocessing. In particular, median filtering can directly benefit from the vast literature on sorting algorithms---for example, adaptive sorting algorithms imply adaptive median filtering algorithms. The reduction is very efficient in practice---for random inputs the performance of the new sorting-based algorithm is on a par with the fastest heap-based algorithms, and for benign data distributions it typically outperforms prior algorithms. The key technical idea is that we can represent the sliding window with a pair of sorted doubly-linked lists: we delete items from one list and add items to the other list. Deletions are easy; additions can be done efficiently if we reverse the time twice: First we construct the full list and delete the items in the reverse order. Then we undo each deletion with Knuth's dancing links technique.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.