Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sobolev orthogonal polynomials on product domains (1406.0762v1)

Published 3 Jun 2014 in math.CA

Abstract: Orthogonal polynomials on the product domain $[a_1,b_1] \times [a_2,b_2]$ with respect to the inner product $$ \langle f,g \rangle_S = \int_{a_1}{b_1} \int_{a_2}{b_2} \nabla f(x,y)\cdot \nabla g(x,y)\, w_1(x)w_2(y) \,dx\, dy + \lambda f(c_1,c_2)g(c_1,c_2) $$ are constructed, where $w_i$ is a weight function on $[a_i,b_i]$ for $i = 1, 2$, $\lambda > 0$, and $(c_1, c_2)$ is a fixed point. The main result shows how an orthogonal basis for such an inner product can be constructed for certain weight functions, in particular, for product Laguerre and product Gegenbauer weight functions, which serve as primary examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.