Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Distributed Block Coordinate Descent for Minimizing Partially Separable Functions (1406.0238v2)

Published 2 Jun 2014 in math.OC

Abstract: In this work we propose a distributed randomized block coordinate descent method for minimizing a convex function with a huge number of variables/coordinates. We analyze its complexity under the assumption that the smooth part of the objective function is partially block separable, and show that the degree of separability directly influences the complexity. This extends the results in [Richtarik, Takac: Parallel coordinate descent methods for big data optimization] to a distributed environment. We first show that partially block separable functions admit an expected separable overapproximation (ESO) with respect to a distributed sampling, compute the ESO parameters, and then specialize complexity results from recent literature that hold under the generic ESO assumption. We describe several approaches to distribution and synchronization of the computation across a cluster of multi-core computers and provide promising computational results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.