Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Statistics for Tail Processes of Markov Chains (1405.7721v2)

Published 29 May 2014 in stat.ME

Abstract: At high levels, the asymptotic distribution of a stationary, regularly varying Markov chain is conveniently given by its tail process. The latter takes the form of a geometric random walk, the increment distribution depending on the sign of the process at the current state and on the flow of time, either forward or backward. Estimation of the tail process provides a nonparametric approach to analyze extreme values. A duality between the distributions of the forward and backward increments provides additional information that can be exploited in the construction of more efficient estimators. The large-sample distribution of such estimators is derived via empirical process theory for cluster functionals. Their finite-sample performance is evaluated via Monte Carlo simulations involving copula-based Markov models and solutions to stochastic recurrence equations. The estimators are applied to stock price data to study the absence or presence of symmetries in the succession of large gains and losses.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube