Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

High performance computation of landscape genomic models integrating local indices of spatial association (1405.7658v2)

Published 29 May 2014 in q-bio.PE

Abstract: Since its introduction, landscape genomics has developed quickly with the increasing availability of both molecular and topo-climatic data. The current challenges of the field mainly involve processing large numbers of models and disentangling selection from demography. Several methods address the latter, either by estimating a neutral model from population structure or by inferring simultaneously environmental and demographic effects. Here we present Sam$\beta$ada, an integrated approach to study signatures of local adaptation, providing rapid processing of whole genome data and enabling assessment of spatial association using molecular markers. Specifically, candidate loci to adaptation are identified by automatically assessing genome-environment associations. In complement, measuring the Local Indicators of Spatial Association (LISA) for these candidate loci allows to detect whether similar genotypes tend to gather in space, which constitutes a useful indication of the possible kinship relationship between individuals. In this paper, we also analyze SNP data from Ugandan cattle to detect signatures of local adaptation with Sam$\beta$ada, BayEnv, LFMM and an outlier method (FDIST approach in Arlequin) and compare their results. Sam$\beta$ada is an open source software for Windows, Linux and MacOS X available at \url{http://lasig.epfl.ch/sambada}

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube