Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

2D Toda τ-functions as combinatorial generating functions (1405.6303v6)

Published 24 May 2014 in math-ph, hep-th, math.CO, math.MP, and nlin.SI

Abstract: Two methods of constructing 2D Toda $\tau$-functions that are generating functions for certain geometrical invariants of a combinatorial nature are related. The first involves generation of paths in the Cayley graph of the symmetric group $S_n$ by multiplication of the conjugacy class sums $C_\lambda \in C[S_n]$ in the group algebra by elements of an abelian group of central elements. Extending the characteristic map to the tensor product $C[S_n]\otimes C[S_n]$ leads to double expansions in terms of power sum symmetric functions, in which the coefficients count the number of such paths. Applying the same map to sums over the orthogonal idempotents leads to diagonal double Schur function expansions that are identified as $\tau$-functions of hypergeometric type. The second method is the standard construction of $\tau$-functions as vacuum state matrix elements of products of vertex operators in a fermionic Fock space with elements of the abelian group of convolution symmetries. A homomorphism between these two group actions is derived and shown to be intertwined by the characteristic map composed with fermionization. Applications include Okounkov's generating function for double Hurwitz numbers, which count branched coverings of the Riemann sphere with nonminimal branching at two points, and various analogous combinatorial counting functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.