Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Parking functions, Shi arrangements, and mixed graphs (1405.5587v2)

Published 22 May 2014 in math.CO

Abstract: The \emph{Shi arrangement} is the set of all hyperplanes in $\mathbb Rn$ of the form $x_j - x_k = 0$ or $1$ for $1 \le j < k \le n$. Shi observed in 1986 that the number of regions (i.e., connected components of the complement) of this arrangement is $(n+1){n-1}$. An unrelated combinatorial concept is that of a \emph{parking function}, i.e., a sequence $(x_1, x_2, ..., x_n)$ of positive integers that, when rearranged from smallest to largest, satisfies $x_k \le k$. (There is an illustrative reason for the term \emph{parking function}.) It turns out that the number of parking functions of length $n$ also equals $(n+1){n-1}$, a result due to Konheim and Weiss from 1966. A natural problem consists of finding a bijection between the $n$-dimensional Shi arragnement and the parking functions of length $n$. Stanley and Pak (1996) and Athanasiadis and Linusson 1999) gave such (quite different) bijections. We will shed new light on the former bijection by taking a scenic route through certain mixed graphs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube