Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Simple Data-Adaptive Probabilistic Variant Calling Model (1405.5251v3)

Published 20 May 2014 in q-bio.GN and stat.AP

Abstract: Background: Several sources of noise obfuscate the identification of single nucleotide variation (SNV) in next generation sequencing data. For instance, errors may be introduced during library construction and sequencing steps. In addition, the reference genome and the algorithms used for the alignment of the reads are further critical factors determining the efficacy of variant calling methods. It is crucial to account for these factors in individual sequencing experiments. Results: We introduce a simple data-adaptive model for variant calling. This model automatically adjusts to specific factors such as alignment errors. To achieve this, several characteristics are sampled from sites with low mismatch rates, and these are used to estimate empirical log-likelihoods. These likelihoods are then combined to a score that typically gives rise to a mixture distribution. From these we determine a decision threshold to separate potentially variant sites from the noisy background. Conclusions: In simulations we show that our simple proposed model is competitive with frequently used much more complex SNV calling algorithms in terms of sensitivity and specificity. It performs specifically well in cases with low allele frequencies. The application to next-generation sequencing data reveals stark differences of the score distributions indicating a strong influence of data specific sources of noise. The proposed model is specifically designed to adjust to these differences.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.