Random Matrices with Log-Range Correlations, and Log-Sobolev Inequalities (1405.2581v2)
Abstract: Let $X_N$ be a symmetric $N\times N$ random matrix whose $\sqrt{N}$-scaled centered entries are uniformly square integrable. We prove that if the entries of $X_N$ can be partitioned into independent subsets each of size $o(\log N)$, then the empirical eigenvalue distribution of $X_N$ converges weakly to its mean in probability. This significantly extends the best previously known results on convergence of eigenvalues for matrices with correlated entries (where the partition subsets are blocks and of size $O(1)$.) we prove this result be developing a new log-Sobolev inequality, generalizing the first author's introduction of mollified log-Sobolev inequalities: we show that if $\mathbf{Y}$ is a bounded random vector and $\mathbf{Z}$ is a standard normal random vector independent from $\mathbf{Y}$, then the law of $\mathbf{Y}+t\mathbf{Z}$ satisfies a log-Sobolev inequality for all $t>0$, and we give bounds on the optimal log-Sobolev constant.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.