Very strong approximation for certain algebraic varieties (1405.1988v2)
Abstract: Let F be a global field. In this work, we show that the Brauer-Manin condition on adelic points for subvarieties of a torus T over F cuts out exactly the rational points, if either F is a function field or, if F is the field of rational numbers and T is split. As an application, we prove a conjecture of Harari-Voloch over global function fields which states, roughly speaking, that on any rational hyperbolic curve, the local integral points with the Brauer-Manin condition are the global integral points. Finally we prove for tori over number fields a theorem of Stoll on adelic points of zero-dimensional subvarieties in abelian varieties.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.