Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On finite groups of isometries of handlebodies in arbitrary dimensions and finite extensions of Schottky groups (1405.1979v2)

Published 8 May 2014 in math.GT

Abstract: It is known that the order of a finite group of diffeomorphisms of a 3-dimensional handlebody of genus g > 1 is bounded by the linear polynomial 12(g-1), and that the order of a finite group of diffeomorphisms of a 4-dimensional handlebody (or equivalently, of its boundary 3-manifold), faithful on the fundamental group, is bounded by a quadratic polynomial in g (but not by a linear one). In the present paper we prove a generalization for handlebodies of arbitrary dimension d, uniformizing handlebodies by Schottky groups and considering finite groups of isometries of such handlebodies. We prove that the order of a finite group of isometries of a handlebody of dimension d acting faithfully on the fundamental group is bounded by a polynomial of degree d/2 in g if d is even, and of degree (d+1)/2 if d is odd, and that the degree d/2 for even d is best possible. This implies then analogous polynomial Jordan-type bounds for arbitrary finite groups of isometries of handlebodies (since a handlebody of dimension d > 3 admits S1-actions, there does not exist an upper bound for the order of the group itself ).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.