Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Disjointly homogeneous rearrangement invariant spaces via interpolation (1405.0681v1)

Published 4 May 2014 in math.FA

Abstract: A Banach lattice E is called p-disjointly homogeneous, 1< p< infty, when every sequence of pairwise disjoint normalized elements in E has a subsequence equivalent to the unit vector basis of l_p. Employing methods from interpolation theory, we clarify which rearrangement invariant (r.i.) spaces on [0,1] are p-disjointly homogeneous. In particular, for every 1<p< infty and any increasing concave function f on [0,1], which is not equivalent neither 1 nor t, there exists a p-disjointly homogeneous r.i. space with the fundamental function f. Moreover, in the class of all interpolation r.i. spaces with respect to the Banach couple of Lorentz and Marcinkiewicz spaces with the same fundamental function, dilation indices of which are non-trivial, for every 1<p< infty, there is only a unique p-disjointly homogeneous space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube