Fredholmness and Index of Simplest Weighted Singular Integral Operators with Two Slowly Oscillating Shifts (1405.0368v3)
Abstract: Let $\alpha$ and $\beta$ be orientation-preserving diffeomorphisms (shifts) of $\mathbb{R}+=(0,\infty)$ onto itself with the only fixed points $0$ and $\infty$, where the derivatives $\alpha'$ and $\beta'$ may have discontinuities of slowly oscillating type at $0$ and $\infty$. For $p\in(1,\infty)$, we consider the weighted shift operators $U\alpha$ and $U_\beta$ given on the Lebesgue space $Lp(\mathbb{R}_+)$ by $U_\alpha f=(\alpha'){1/p}(f\circ\alpha)$ and $U_\beta f= (\beta'){1/p}(f\circ\beta)$. For $i,j\in\mathbb{Z}$ we study the simplest weighted singular integral operators with two shifts $A_{ij}=U_\alphai P_\gamma++U_\betaj P_\gamma-$ on $Lp(\mathbb{R}_+)$, where $P_\gamma\pm=(I\pm S_\gamma)/2$ are operators associated to the weighted Cauchy singular integral operator $$ (S_\gamma f)(t)=\frac{1}{\pi i}\int_{\mathbb{R}+} \left(\frac{t}{\tau}\right)\gamma\frac{f(\tau)}{\tau-t}d\tau $$ with $\gamma\in\mathbb{C}$ satisfying $0<1/p+\Re\gamma<1$. We prove that the operator $A{ij}$ is a Fredholm operator on $Lp(\mathbb{R}_+)$ and has zero index if [ 0<\frac{1}{p}+\Re\gamma+\frac{1}{2\pi}\inf_{t\in\mathbb{R}+}(\omega{ij}(t)\Im\gamma), \quad \frac{1}{p}+\Re\gamma+\frac{1}{2\pi}\sup_{t\in\mathbb{R}+}(\omega{ij}(t)\Im\gamma)<1, ] where $\omega_{ij}(t)=\log[\alpha_i(\beta_{-j}(t))/t]$ and $\alpha_i$, $\beta_{-j}$ are iterations of $\alpha$, $\beta$. This statement extends an earlier result obtained by the author, Yuri Karlovich, and Amarino Lebre for $\gamma=0$.