Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a Weighted Singular Integral Operator with Shifts and Slowly Oscillating Data (1501.03744v1)

Published 15 Jan 2015 in math.FA

Abstract: Let $\alpha,\beta$ be orientation-preserving diffeomorphism (shifts) of $\mathbb{R}+=(0,\infty)$ onto itself with the only fixed points $0$ and $\infty$ and $U\alpha,U_\beta$ be the isometric shift operators on $Lp(\mathbb{R}_+)$ given by $U_\alpha f=(\alpha'){1/p}(f\circ\alpha)$, $U_\beta f=(\beta'){1/p}(f\circ\beta)$, and $P_2\pm=(I\pm S_2)/2$ where [ (S_2 f)(t):=\frac{1}{\pi i}\int\limits_0\infty \left(\frac{t}{\tau}\right){1/2-1/p}\frac{f(\tau)}{\tau-t}\,d\tau, \quad t\in\mathbb{R}+, ] is the weighted Cauchy singular integral operator. We prove that if $\alpha',\beta'$ and $c,d$ are continuous on $\mathbb{R}+$ and slowly oscillating at $0$ and $\infty$, and [ \limsup_{t\to s}|c(t)|<1, \quad \limsup_{t\to s}|d(t)|<1, \quad s\in{0,\infty}, ] then the operator $(I-cU_\alpha)P_2++(I-dU_\beta)P_2-$ is Fredholm on $Lp(\mathbb{R}_+)$ and its index is equal to zero. Moreover, its regularizers are described.

Summary

We haven't generated a summary for this paper yet.