Channel-Optimized Vector Quantizer Design for Compressed Sensing Measurements
Abstract: We consider vector-quantized (VQ) transmission of compressed sensing (CS) measurements over noisy channels. Adopting mean-square error (MSE) criterion to measure the distortion between a sparse vector and its reconstruction, we derive channel-optimized quantization principles for encoding CS measurement vector and reconstructing sparse source vector. The resulting necessary optimal conditions are used to develop an algorithm for training channel-optimized vector quantization (COVQ) of CS measurements by taking the end-to-end distortion measure into account.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.