Papers
Topics
Authors
Recent
2000 character limit reached

Channel-Optimized Vector Quantizer Design for Compressed Sensing Measurements

Published 30 Apr 2014 in cs.IT and math.IT | (1404.7648v1)

Abstract: We consider vector-quantized (VQ) transmission of compressed sensing (CS) measurements over noisy channels. Adopting mean-square error (MSE) criterion to measure the distortion between a sparse vector and its reconstruction, we derive channel-optimized quantization principles for encoding CS measurement vector and reconstructing sparse source vector. The resulting necessary optimal conditions are used to develop an algorithm for training channel-optimized vector quantization (COVQ) of CS measurements by taking the end-to-end distortion measure into account.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.