Papers
Topics
Authors
Recent
2000 character limit reached

Traveling wave solutions in a half-space for boundary reactions (1404.6362v1)

Published 25 Apr 2014 in math.AP

Abstract: We prove the existence and uniqueness of a traveling front and of its speed for the homogeneous heat equation in the half-plane with a Neumann boundary reaction term of non-balanced bistable type or of combustion type. We also establish the monotonicity of the front and, in the bistable case, its behavior at infinity. In contrast with the classical bistable interior reaction model, its behavior at the side of the invading state is of power type, while at the side of the invaded state its decay is exponential. These decay results rely on the construction of a family of explicit bistable traveling fronts. Our existence results are obtained via a variational method, while the uniqueness of the speed and of the front rely on a comparison principle and the sliding method.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.