Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the Density of Integer Points on the Generalised Markoff-Hurwitz and Dwork Hypersurfaces (1404.5866v1)

Published 23 Apr 2014 in math.NT

Abstract: We use bounds of mixed character sums modulo a prime $p$ to estimate the density of integer points on the hypersurface $$ f_1(x_1) + \ldots + f_n(x_n) =a x_1{k_1} \ldots x_n{k_n} $$ for some polynomials $f_i \in {\mathbb Z}[X]$, nonzero integer $a$ and positive integers $k_i$ $i=1, \ldots, n$. In the case of $$ f_1(X) = \ldots = f_n(X) = X2 \quad \text{and}\quad k_1 = \ldots = k_n =1 $$ the above congruence is known as the Markoff-Hurwitz hypersurface, while for $$ f_1(X) = \ldots = f_n(X) = Xn\quad \text{and}\quad k_1 = \ldots = k_n =1 $$ it is known as the Dwork hypersurface. Our result is substantially stronger than those known for general hypersurfaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.