Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the symplectic eightfold associated to a Pfaffian cubic fourfold

Published 22 Apr 2014 in math.AG | (1404.5657v2)

Abstract: We show that the irreducible holomorphic symplectic eightfold Z associated to a cubic fourfold Y not containing a plane is deformation-equivalent to the Hilbert scheme of four points on a K3 surface. We do this by constructing for a generic Pfaffian cubic Y a birational map Z ---> Hilb4(X), where X is the K3 surface associated to Y by Beauville and Donagi. We interpret Z as a moduli space of complexes on X and observe that at some point of Z, hence on a Zariski open subset, the complex is just the ideal sheaf of four points.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.