Papers
Topics
Authors
Recent
2000 character limit reached

A Study in Three-Dimensional Chaotic Dynamics: Granular Flow and Transport in a Bi-Axial Spherical Tumbler (1404.4660v1)

Published 17 Apr 2014 in math.DS and physics.flu-dyn

Abstract: We study 3D chaotic dynamics through an analysis of transport in a granular flow in a half-full spherical tumbler rotated sequentially about two orthogonal axes (a bi-axial "blinking" tumbler). The flow is essentially quasi-2D in any vertical slice of the sphere during rotation about a single axis, and we provide an explicit exact solution to the model in this case. Hence, the cross-sectional flow can be represented by a twist map, allowing us to express the 3D flow as a linked twist map (LTM). We prove that if the rates of rotation about each axis are equal, then (in the absence of stochasticity) particle trajectories are restricted to 2D surfaces consisting of a portion of a hemispherical shell closed by a "cap"; if the rotation rates are unequal, then particles can leave the surface they start on and traverse a volume of the tumbler. The period-one structures of the governing LTM are examined in detail: analytical expressions are provided for the location of period-one curves, their extent into the bulk of the granular material, and their dependence on the protocol parameters (rates and durations of rotations). Exploiting the restriction of trajectories to 2D surfaces in the case of equal rotation rates about the axes, a method is proposed for identifying and constructing 3D Kolmogorov-Arnold-Moser (KAM) tubes around the normally elliptic period-one curves. The invariant manifold structure arising from the normally hyperbolic period-one curves is also examined. When the motion is restricted to 2D surfaces, the structure of manifolds of the hyperbolic points in the bulk differs from that corresponding to hyperbolic points in the flowing layer. Each is reminiscent of a template provided by a non-integrable perturbation to a Hamiltonian system, though the governing LTM is not. This highlights the novel 3D chaotic behaviors observed in this model dynamical system.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.