Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-evaluation of comparability metrics using parallel corpora (1404.3759v1)

Published 14 Apr 2014 in cs.CL

Abstract: Metrics for measuring the comparability of corpora or texts need to be developed and evaluated systematically. Applications based on a corpus, such as training Statistical MT systems in specialised narrow domains, require finding a reasonable balance between the size of the corpus and its consistency, with controlled and benchmarked levels of comparability for any newly added sections. In this article we propose a method that can meta-evaluate comparability metrics by calculating monolingual comparability scores separately on the 'source' and 'target' sides of parallel corpora. The range of scores on the source side is then correlated (using Pearson's r coefficient) with the range of 'target' scores; the higher the correlation - the more reliable is the metric. The intuition is that a good metric should yield the same distance between different domains in different languages. Our method gives consistent results for the same metrics on different data sets, which indicates that it is reliable and can be used for metric comparison or for optimising settings of parametrised metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bogdan Babych (1 paper)
  2. Anthony Hartley (1 paper)
Citations (5)

Summary

We haven't generated a summary for this paper yet.