Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing how 'distributional' NLP corpora distance metrics are (2310.14829v1)

Published 23 Oct 2023 in cs.CL and stat.AP

Abstract: A corpus of vector-embedded text documents has some empirical distribution. Given two corpora, we want to calculate a single metric of distance (e.g., Mauve, Frechet Inception) between them. We describe an abstract quality, called `distributionality', of such metrics. A non-distributional metric tends to use very local measurements, or uses global measurements in a way that does not fully reflect the distributions' true distance. For example, if individual pairwise nearest-neighbor distances are low, it may judge the two corpora to have low distance, even if their two distributions are in fact far from each other. A more distributional metric will, in contrast, better capture the distributions' overall distance. We quantify this quality by constructing a Known-Similarity Corpora set from two paraphrase corpora and calculating the distance between paired corpora from it. The distances' trend shape as set element separation increases should quantify the distributionality of the metric. We propose that Average Hausdorff Distance and energy distance between corpora are representative examples of non-distributional and distributional distance metrics, to which other metrics can be compared, to evaluate how distributional they are.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Samuel Ackerman (21 papers)
  2. George Kour (16 papers)
  3. Eitan Farchi (37 papers)