Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Termhood-based Comparability Metrics of Comparable Corpus in Special Domain (1302.4489v1)

Published 19 Feb 2013 in cs.CL

Abstract: Cross-Language Information Retrieval (CLIR) and machine translation (MT) resources, such as dictionaries and parallel corpora, are scarce and hard to come by for special domains. Besides, these resources are just limited to a few languages, such as English, French, and Spanish and so on. So, obtaining comparable corpora automatically for such domains could be an answer to this problem effectively. Comparable corpora, that the subcorpora are not translations of each other, can be easily obtained from web. Therefore, building and using comparable corpora is often a more feasible option in multilingual information processing. Comparability metrics is one of key issues in the field of building and using comparable corpus. Currently, there is no widely accepted definition or metrics method of corpus comparability. In fact, Different definitions or metrics methods of comparability might be given to suit various tasks about natural language processing. A new comparability, namely, termhood-based metrics, oriented to the task of bilingual terminology extraction, is proposed in this paper. In this method, words are ranked by termhood not frequency, and then the cosine similarities, calculated based on the ranking lists of word termhood, is used as comparability. Experiments results show that termhood-based metrics performs better than traditional frequency-based metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sa Liu (2 papers)
  2. Chengzhi Zhang (37 papers)
Citations (5)