Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On a generalization of close-to-convex functions (1404.3268v1)

Published 12 Apr 2014 in math.CV

Abstract: A motivation comes from {\em M. Ismail and et al.: A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77--84} to study a generalization of close-to-convex functions by means of a $q$-analog of a difference operator acting on analytic functions in the unit disk $\mathbb{D}={z\in \mathbb{C}:\,|z|<1}$. We use the terminology {\em $q$-close-to-convex functions} for the $q$-analog of close-to-convex functions. The $q$-theory has wide applications in special functions and quantum physics which makes the study interesting and pertinent in this field. In this paper, we obtain some interesting results concerning conditions on the coefficients of power series of functions analytic in the unit disk which ensure that they generate functions in the $q$-close-to-convex family. As a result we find certain dilogarithm functions that are contained in this family. Secondly, we also study the famous Bieberbach conjecture problem on coefficients of analytic $q$-close-to-convex functions. This produces several power series of analytic functions convergent to basic hypergeometric functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube