2000 character limit reached
Roots of unity in definite quaternion orders (1404.3244v1)
Published 11 Apr 2014 in math.NT
Abstract: A commutative order in a quaternion algebra is called selective if it is embeds into some, but not all, the maximal orders in the algebra. It is known that a given quadratic order over a number field can be selective in at most one indefinite quaternion algebra. Here we prove that the order generated by a cubic root of unity is selective for any definite quaternion algebra over the rationals with a type number 3 or larger. The proof extends to a few other closely related orders.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.