Papers
Topics
Authors
Recent
2000 character limit reached

Enhanced Cluster Computing Performance Through Proportional Fairness (1404.2266v1)

Published 8 Apr 2014 in cs.PF, cs.DC, and cs.NI

Abstract: The performance of cluster computing depends on how concurrent jobs share multiple data center resource types like CPU, RAM and disk storage. Recent research has discussed efficiency and fairness requirements and identified a number of desirable scheduling objectives including so-called dominant resource fairness (DRF). We argue here that proportional fairness (PF), long recognized as a desirable objective in sharing network bandwidth between ongoing flows, is preferable to DRF. The superiority of PF is manifest under the realistic modelling assumption that the population of jobs in progress is a stochastic process. In random traffic the strategy-proof property of DRF proves unimportant while PF is shown by analysis and simulation to offer a significantly better efficiency-fairness tradeoff.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.