Bayesian DEJD model and detection of asymmetric jumps (1404.2050v1)
Abstract: News might trigger jump arrivals in financial time series. The "bad" and "good" news seems to have distinct impact. In the research, a double exponential jump distribution is applied to model downward and upward jumps. Bayesian double exponential jump-diffusion model is proposed. Theorems stated in the paper enable estimation of the model's parameters, detection of jumps and analysis of jump frequency. The methodology, founded upon the idea of latent variables, is illustrated with two empirical studies, employing both simulated and real-world data (the KGHM index). News might trigger jump arrivals in financial time series. The "bad" and "good" news seems to have distinct impact. In the research, a double exponential jump distribution is applied to model downward and upward jumps. Bayesian double exponential jump-diffusion model is proposed. Theorems stated in the paper enable estimation of the model's parameters, detection of jumps and analysis of jump frequency. The methodology, founded upon the idea of latent variables, is illustrated with two empirical studies, employing both simulated and real-world data (the KGHM index).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.